2,483
Views
167
CrossRef citations to date
0
Altmetric
Original Articles

Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data

, &
Pages 712-728 | Received 02 Apr 2010, Accepted 04 Dec 2011, Published online: 18 Sep 2012
 

Abstract

Nitrogen (N) is one of the most important limiting nutrients for sugarcane production. Conventionally, sugarcane N concentration is examined using direct methods such as collecting leaf samples from the field followed by analytical assays in the laboratory. These methods do not offer real-time, quick, and non-destructive strategies for estimating sugarcane N concentration. Methods that take advantage of remote sensing, particularly hyperspectral data, can present reliable techniques for predicting sugarcane leaf N concentration. Hyperspectral data are extremely large and of high dimensionality. Many hyperspectral features are redundant due to the strong correlation between wavebands that are adjacent. Hence, the analysis of hyperspectral data is complex and needs to be simplified by selecting the most relevant spectral features. The aim of this study was to explore the potential of a random forest (RF) regression algorithm for selecting spectral features in hyperspectral data necessary for predicting sugarcane leaf N concentration. To achieve this, two Hyperion images were captured from fields of 6–7 month-old sugarcane, variety N19. The machine-learning RF algorithm was used as a feature-selection and regression method to analyse the spectral data. Stepwise multiple linear (SML) regression was also examined to predict the concentration of sugarcane leaf N after the reduction of the redundancy in hyperspectral data. The results showed that sugarcane leaf N concentration can be predicted using both non-linear RF regression (coefficient of determination, R 2 = 0.67; root mean square error of validation (RMSEV) = 0.15%; 8.44% of the mean) and SML regression models (R 2 = 0.71; RMSEV = 0.19%; 10.39% of the mean) derived from the first-order derivative of reflectance. It was concluded that the RF regression algorithm has potential for predicting sugarcane leaf N concentration using hyperspectral data.

Acknowledgements

The authors thank the South African Sugarcane Research Institute (SASRI) and the University of KZN in South Africa for funding this study. Thanks to Dr Maurits van den Berg (formerly with SASRI) for his valuable comments. Thanks are extended to SASRI extension specialist, Mr Marius Adendorff, for his keen help in identifying the sample fields. Many thanks to Cyril Cele, Nitesh Poona, Innocent Shezi, and Tholang Mokhele for their support in the field data collection. Gratitude is extended to the R development core team for their very powerful open source packages for statistical analysis. We are very grateful to the anonymous reviewers for their valuable comments and suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.