885
Views
101
CrossRef citations to date
0
Altmetric
Original Articles

Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model

, , , &
Pages 3520-3542 | Received 30 Dec 2010, Accepted 02 Jun 2011, Published online: 24 Oct 2012
 

Abstract

The leaf area index (LAI), defined as the one-sided green leaf area per unit ground area, is used in many numerical weather prediction (NWP) models as an indicator of the vegetation development state, which is of paramount importance to characterize land evaporation, photosynthesis, and carbon-uptake processes. LAI is often simply represented by lookup tables, dependent on the vegetation type and seasons. However, global LAI datasets derived from remote sensing observations have more recently become available. These products are based on sensors such as the Advanced Very High Resolution Radiometer (AVHRR) or the Moderate Resolution Imaging Spectroradiometer (MODIS), onboard polar orbiting satellites that can cover the entire globe within typically 3 days and with a spatial resolution of the order of 1 km.

We examine the meteorological impact of satellite-derived LAI products on near-surface air temperature and humidity, which comes both from the stomatal transpiration of leaves and from the intercepted water on the surface of leaves, re-evaporating into the atmosphere.

Two distinct monthly LAI climatology datasets derived respectively from AVHRR and MODIS sensors are tested. A set of forecasts and data assimilation experiments with the integrated forecasting system of the European Centre for Medium-range Weather Forecasts is performed with the monthly LAI climatology datasets as opposed to a vegetation-dependent constant LAI. The monthly LAI is shown to improve the forecasts of near-surface (screen-level) air temperature and relative humidity through its effect on evapotranspiration, with the largest impact obtained over needleleaf forests, crops, and grassland. At longer time-scales, the introduction of the monthly LAI is shown to have a positive impact on the model climate particularly during the boreal spring, where the LAI climatology has a large seasonal cycle.

Acknowledgements

We would like to thank Alan Betts and Tilden Meyers for their valuable comments on the results. Testing for a monthly LAI has been initiated by Bart van den Hurk and Martijn Brandt at KNMI and we acknowledge their effort. We would like to thank Philippe Lopez, Peter Bechtold, Deborah Salmond, and Jan Haseler for help during the testing and implementation phases. This work is a contribution to the GEOLAND-2 project, funded by the European Commission within the GMES initiative in FP7.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.