545
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Estimating crop-specific evapotranspiration using remote-sensing imagery at various spatial resolutions for improving crop growth modelling

, , , , , , & show all
Pages 3274-3288 | Received 30 Nov 2010, Accepted 29 Jul 2011, Published online: 26 Oct 2012
 

Abstract

By governing water transfer between vegetation and atmosphere, evapotranspiration (ET) can have a strong influence on crop yields. An estimation of ET from remote sensing is proposed by the EUMETSAT ‘Satellite Application Facility’ (SAF) on Land Surface Analysis (LSA). This ET product is obtained operationally every 30 min using a simplified SVAT scheme that uses, as input, a combination of remotely sensed data and atmospheric model outputs. The standard operational mode uses other LSA-SAF products coming from SEVIRI imagery (the albedo, the downwelling surface shortwave flux, and the downwelling surface longwave flux), meteorological data, and the ECOCLIMAP database to identify and characterize the land cover.

With the overall objective of adapting this ET product to crop growth monitoring necessities, this study focused first on improving the ET product by integrating crop-specific information from high and medium spatial resolution remote-sensing data. A Landsat (30 m)-based crop type classification is used to identify areas where the target crop, winter wheat, is located and where crop-specific Moderate Resolution Imaging Spectroradiometer (MODIS) (250 m) time series of green area index (GAI) can be extracted. The SVAT model was run for 1 year (2007) over a study area covering Belgium and part of France using this supplementary information. Results were compared to those obtained using the standard operational mode.

ET results were also compared with ground truth data measured in an eddy covariance station. Furthermore, transpiration and potential transpiration maps were retrieved and compared with those produced using the Crop Growth Monitoring System (CGMS), which is run operationally by the European Commission's Joint Research Centre to produce in-season forecast of major European crops. The potential of using ET obtained from remote sensing to improve crop growth modelling in such a framework is studied and discussed.

Finally, the use of the ET product is also explored by integrating it in a simpler modelling approach based on light-use efficiency. The Carnegie–Ames–Stanford Approach (CASA) agroecosystem model was therefore applied to obtain net primary production, dry matter productivity, and crop yield using only LSA-SAF products. The values of yield were compared with those obtained using CGMS, and the dry matter productivity values with those produced at the Flemish Institute for Technological Research (VITO). Results showed the potential of using this simplified remote-sensing method for crop monitoring.

Acknowledgements

This research is funded by the Belgian Scientific Policy under the STEREO II programme. Thanks are due to the principal investigator of the CarboEurope station of Lonzée for the validation data provided. Thanks also to Andrew Singleton for his last revision of the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.