1,056
Views
50
CrossRef citations to date
0
Altmetric
Original Articles

Distinguishing wetland vegetation and channel features with object-based image segmentation

&
Pages 1332-1354 | Received 30 Dec 2011, Accepted 27 May 2012, Published online: 10 Oct 2012
 

Abstract

Mapping landscape features within wetlands using remote-sensing imagery is a persistent challenge due to the fine scale of wetland pattern variation and the low spectral contrast among plant species. Object-based image analysis (OBIA) is a promising approach for distinguishing wetland features, but systematic guidance for this use of OBIA is not presently available. A sensitivity analysis was tested using OBIA to distinguish vegetation zones, vegetation patches, and surface water channels in two intertidal salt marshes in southern San Francisco Bay. Optimal imagery sources and OBIA segmentation settings were determined from 348 sensitivity tests using the eCognition multiresolution segmentation algorithm. The optimal high-resolution (≤1 m) imagery choices were colour infrared (CIR) imagery to distinguish vegetation zones, CIR or red, green, blue (RGB) imagery to distinguish vegetation patches depending on species and season, and RGB imagery to distinguish surface water channels. High-resolution (1 m) lidar data did not help distinguish small surface water channels or other features. Optimal segmentation varied according to segmentation setting choices. Small vegetation patches and narrow channels were more recognizable using small scale parameter settings and coarse vegetation zones using larger scale parameter settings. The scale parameter served as a de facto lower bound to median segmented object size. Object smoothness/compactness weight settings had little effect. Wetland features were more recognizable using high colour/low shape weight settings. However, an experiment on a synthetic non-wetland image demonstrated that, colour information notwithstanding, segmentation results are still strongly affected by the selected image resolution, OBIA settings, and shape of the analysis region. Future wetland OBIA studies may benefit from strategically making imagery and segmentation setting choices based on these results; such systemization of future wetland OBIA approaches may also enhance study comparability.

Acknowledgements

We thank the San Francisco Estuary Institute and the City of San Jose for providing us with the aerial and satellite imagery. This work was supported by National Science Foundation grant EAR-1013843 to Stanford University. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.