589
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Disaggregation of land surface temperature over a heterogeneous urban and surrounding suburban area: a case study in Shanghai, China

, , &
Pages 1707-1723 | Received 30 Dec 2011, Accepted 14 Jun 2012, Published online: 02 Nov 2012
 

Abstract

Many application fields need land surface temperature (LST) with simultaneous high spatial and temporal resolution, which can be achieved through the disaggregation technique. Most published methods built an assumed scale-independent relationship between LST and predictor variables derived from coarse spatial resolution data. However, LST disaggregation in the heterogeneous areas, especially urban areas, is very difficult to achieve and there are few studies on it. In this article, we propose an adjusted stratified stepwise regression method for temperature disaggregation in urban areas. Landsat Enhanced Thematic Plus (ETM+) data from Shanghai, China, were used to construct remote-sensing indices that are related to LST variance and retrieve LST at 60 and 480 m spatial resolution, respectively. Different stepwise regression models at 480 m resolution were built for two stratified regions according to normalized difference vegetation index (NDVI) distribution, and then each independent variable at 60 m resolution was adjusted to calculate disaggregated LST by considering its relationship with the 480 m resolution image. By using LST retrieved directly from ETM+ band 6 at 60 m spatial resolution as the reference, the proposed method comprising resampling disaggregation, the thermal data sharpening model (TsHARP)/disaggregation procedure for radiometric surface temperature (DisTrad) technique, and the LST-principal component analysis (PCA) regression algorithm were verified and compared. The results show that the temperature distribution estimated using the proposed method is most consistent with that of the reference LST in this heterogeneous study area, and that the precision improves significantly, especially for the low vegetation fraction region.

Acknowledgements

This study was supported by the Natural Science Foundation of China (No. 41001289), the Natural Science Foundation for Colleges and Universities of Jiangsu Province (No. 09KJB170002), and a Jiangsu Government Scholarship for Overseas Studies. The authors also acknowledge funding from the Faculty of Science & Engineering, Flinders University, and the Priority Academic Programme Development of Jiangsu Higher Education Institutions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.