259
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The effect of soil moisture and wind speed on aerosol optical thickness retrieval in a desert environment using SEVIRI thermal channels

, &
Pages 5054-5071 | Received 22 Aug 2012, Accepted 26 Nov 2012, Published online: 11 Apr 2013
 

Abstract

Dust emission and deposition are associated with several factors such as surface roughness, land cover, soil properties, soil moisture (SM), and wind speed (WS). A combination of land surface and remote-sensing models has recently been investigated for dust detection and monitoring. The thermal bands of the Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager (MSG/SEVIRI) satellite are widely used for qualitative detection of dust over desert because of their high spectral and temporal resolutions. In this work, the contribution of ground-measured WS data and satellite-measured SM data on aerosol optical thickness (AOT) retrieval was investigated using an artificial neural network (ANN) model. ANNs have been applied in similar applications and have shown a higher performance than simple multiple-regression models. This performance is mainly due to the ANN's ability to capture complex and non-linear relationships between inputs and outputs. A combination of MSG/SEVIRI brightness temperature (BT)/brightness temperature differences (BTDs), BTD3.9–10.8, BTD8.7–10.8, BTD10.8–12, and BT3.9, was used as input to the base ANN model while Aerosol Robotic Network (AERONET) AOT (level 2) data at 0.5 μm were used as output. These input/output sets were obtained from two stations (Hamim and Mezaira) lying in the inland desert of the United Arab Emirates (UAE). About 3800 observations were collected, of which two-thirds were used to train the ANN model and the remaining third was kept as an independent set to assess the accuracy of the trained model. Later, Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) SM data and ground-measured WS data were used as additional inputs to the base model to investigate their contribution to the AOT retrieval. SM data consist of daytime AMSR-E-derived daily and collected from a National Snow and Ice Data Centre (NSIDC)-archived database. Hourly average WS data were also collected at 10 m height in the same AERONET sites from two stations managed by the UAE National Centre of Meteorology and Seismology. All ground and satellite measurements were extracted for the closest time to AERONET measurements. The use of these additional inputs has been shown to have a positive impact on the accuracy of simulated AOT. The addition of these inputs to the base ANN increased R 2 from 0.68 to 0.76 and reduced root mean square error from 0.113 to 0.09.

Acknowledgements

The authors would like to extend special thanks to Dr Prashanth Marphu and Dr Saima Munawwar for their valuable feedback. The authors are grateful to the Principal Investigators and their staff from the AERONET stations at Hamim and Mezaira for their effort in establishing and maintaining the sites. The authors are also grateful to the UAE NCMS for providing the meteorological data. Thanks are also due to the National Snow and Ice Data Centre (NSIDC) for their effort in hosting and maintaining AMSR-E SM data and making them publicly available.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.