1,152
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Remote sensing of tea plantations using an SVM classifier and pattern-based accuracy assessment technique

, , &
Pages 8549-8565 | Received 19 Mar 2013, Accepted 28 Aug 2013, Published online: 07 Oct 2013
 

Abstract

Tea (Camellia sp.) and its plantation are very important on a worldwide scale as it is the second-most consumed beverage after water. Therefore, it becomes necessary to map the widely distributed tea plantations under various geographies and conditions. Remote-sensing techniques are effective tools to map and monitor the impact of tea plantation on land-use/land-cover (LULC). Remote sensing of tea plantations suffers from spectral mixing as these plantation areas are generally surrounded by similar types of green vegetation such as orchards and bushes. This problem is mainly tied to planting style, topography, and spectral characteristics of tea plantations, and the side effects are observed as low classification accuracies after the classification process. In this study, to overcome this problem, a three-step approach was proposed and implemented on a test area with high slope. As a first step, spectral and multi-scale textural features based on Gabor filters were extracted from high resolution multispectral digital aerial images. Similarly, based on the wavelength range of the sensor, a modified normalized difference vegetation index (MNDVI) was applied to distinguish the green vegetation cover from other LULCs. The second step involves the classification of multidimensional textural and spectral feature combinations using a support vector machine (SVM) algorithm. As a final step, two different techniques were applied for evaluating classification accuracy. The first one is a traditional site-specific accuracy assessment based on a confusion matrix calculating statistical metrics for different feature combinations. The overall accuracy and kappa values were calculated as 93.68% and 0.92, 93.82% and 0.92, and 97.40% and 0.97 for LULC maps produced by red, green, and blue (RGB), RGB + MNDVI, and RGB + MNDVI + Gabor features, respectively. The second accuracy assessment technique was the pattern-based accuracy assessment. The technique involves polygon-based fuzzy local matching. Three comparison maps showing local matching indices were obtained and used to compute the global matching index (g) for LULC maps of each feature set combination. The g values were g(RGB) (0.745), g(RGB+MNDVI) (0.745), and g(RGB+MNDVI+Gabor) (0.765) for comparison maps. Finally, based on accuracy assessment metrics, the study area was successfully classified and tea plantation features were extracted with high accuracy.

Acknowledgement

The authors are grateful to the Turkish General Command of Mapping for providing the digital aerial multispectral image data.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.