573
Views
35
CrossRef citations to date
0
Altmetric
Articles

Integrated data fusion and mining techniques for monitoring total organic carbon concentrations in a lake

, , &
Pages 1064-1093 | Received 12 Jun 2013, Accepted 15 Nov 2013, Published online: 05 Feb 2014
 

Abstract

Monitoring water quality on a near-real-time basis to address water resource management and public health concerns in coupled natural systems and the built environment is by no means an easy task. Total organic carbon (TOC) in surface waters is a known precursor of disinfection by-products in drinking water treatment such as total trihalomethanes (TTHMs), which are a suspected carcinogen and have been related to birth defects if water treatment plants cannot remove them. In this paper, an early warning system using integrated data fusion and mining (IDFM) techniques was proposed to estimate spatiotemporal distributions of TOC on a daily basis for monitoring water quality in a lake that serves as the source of a drinking water treatment plant. Landsat satellite images have high spatial resolution, but such application suffers from a long overpass interval of 16 days. On the other hand, coarse-resolution sensors with frequent revisit times, such as MODIS, are incapable of providing detailed water quality information because of low spatial resolution. This issue can be resolved by using data or sensor fusion techniques, such as IDFM, in which the high-spatial-resolution Landsat and the high-temporal-resolution MODIS images are fused and analysed by a suite of regression models to optimally produce synthetic images with both high spatial and temporal resolution. Analysis of the results using four statistical indices confirmed that the genetic programming model can accurately estimate the spatial and temporal variations of TOC concentrations in a small lake. The model entails a slight bias towards overestimating TOC, and it requires cloud-free input data for the lake. The IDFM efforts lead to the reconstruction of the spatiotemporal TOC distributions in a lake in support of healthy drinking water treatment.

Acknowledgements

Support from the USEPA National Risk Management Research Laboratory is gratefully acknowledged. The research described herein has been subjected to the Agency’s peer and administrative review and has been approved for external publication. Any opinions expressed in this paper are those of the author(s) and do not necessarily reflect the views of the Agency, therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.