909
Views
55
CrossRef citations to date
0
Altmetric
Articles

Assessing the impact of training sample selection on accuracy of an urban classification: a case study in Denver, Colorado

, &
Pages 2067-2081 | Received 12 Oct 2013, Accepted 03 Jan 2014, Published online: 06 Mar 2014
 

Abstract

Understanding the factors that influence the performance of classifications over urban areas is of considerable importance to applications of remote-sensing-derived products in urban design and planning. We examined the impact of training sample selection on a binary classification of urban and nonurban for the Denver, Colorado, metropolitan area. Complete coverage reference data for urban and nonurban cover were available for the year 1997, which allowed us to examine variability in accuracy of the classification over multiple repetitions of the training sample selection and classification process. Four sampling designs for selecting training data were evaluated. These designs represented two options for stratification (spatial and class-specific) and two options for sample allocation (proportional to area and equal allocation). The binary urban and nonurban classification was obtained by employing a decision tree classifier with Landsat imagery. The decision tree classifier was applied to 1000 training samples selected by each of the four training data sampling designs, and accuracy for each classification was derived using the complete coverage reference data. The allocation of sample size to the two classes had a greater effect on classifier performance than the spatial distribution of the training data. The choice of proportional or equal allocation depends on which accuracy objectives have higher priority for a given application. For example, proportionally allocating the training sample to urban and nonurban classes favoured user’s accuracy of urban whereas equally allocating the training sample to the two classes favoured producer’s accuracy of urban. Although this study focused on urban and nonurban classes, the results and conclusions likely generalize to any binary classification in which the two classes represent disproportionate areas.

Acknowledgements

We thank two anonymous reviewers and the editor for their constructive comments that helped improve the manuscript. The research is solely the responsibility of the authors and does not necessarily represent the official views of the USGS.

Funding

Stehman was supported by the United States Geological Survey [Grant/Cooperative Agreement Number G12AC20221]. Jin and Mountrakis were supported by the National Aeronautics and Space Administration Biodiversity Program [grant number NNX09AK16G].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.