526
Views
45
CrossRef citations to date
0
Altmetric
Articles

Geo-referencing forest field plots by co-registration of terrestrial and airborne laser scanning data

, , &
Pages 3135-3149 | Received 04 Jul 2013, Accepted 02 Mar 2014, Published online: 04 Apr 2014
 

Abstract

Remote sensing plays an important role within the field of forest inventory. Airborne laser scanning (ALS) has become an effective tool for acquiring forest inventory data. In most ALS-based forest inventories, accurately positioned field plots are used in the process of relating ALS data to field-observed biophysical properties. The geo-referencing of these field plots is typically carried out by means of differential global navigation satellite systems (dGNSS), and often relies on logging times of 15–20 min to ensure adequate accuracy under different forest conditions. Terrestrial laser scanning (TLS) has been proposed as a possible tool for collection of field data in forest inventories and can facilitate rapid acquisition of these data. In the present study, a novel method for co-registration of TLS and ALS data by posterior analysis of remote-sensing data – rather than using dGNSS – was proposed and then tested on 71 plots in a boreal forest. The method relies on an initial position obtained with a recreational-grade GPS receiver, in addition to analysis of the ALS and TLS data. First, individual tree positions were derived from the remote-sensing data. A search algorithm was then used to find the best match for the TLS-derived trees among the ALS-derived trees within a search area, defined relative to the initial position. The accuracy of co-registration was assessed by comparison with an accurately measured reference position. With a search radius of 25 m and using low-density ALS data (0.7 points m−2), 82% and 51% of the TLS scans were co-registered with positional errors within 1 m and 0.5 m, respectively. By using ALS data of medium density (7.5 points m−2), 87% and 78% of the scans were co-registered with errors within 1 m and 0.5 m of the reference position, respectively. These results are promising and the method can facilitate rapid acquisition and geo-referencing of field data. Robust methods to identify and handle erroneous matches are, however, required before it is suitable for operational use.

Acknowledgements

We would like to thank Geoplan 3D (Norway) for acquiring the TLS data, TreeMetrics Ltd. (Ireland) for partly processing and analysing the TLS data, and Blom Geomatics (Norway) for providing and partly processing the ALS data. We would also like to thank the anonymous reviewers for helpful and constructive comments and suggestions.

Funding

The projected was funded by the Research Council of Norway (project no. 192263).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.