532
Views
21
CrossRef citations to date
0
Altmetric
Ocean colour remote sensing

Mapping bottom depth and albedo in coastal waters of the South China Sea islands and reefs using Landsat TM and ETM+ data

, , , &
Pages 4156-4172 | Received 12 Aug 2013, Accepted 10 Feb 2014, Published online: 05 Jun 2014
 

Abstract

Optical models for the retrieval of shallow water bottom depth and albedo using multispectral data usually require in situ water depth data to tune the model parameters. In the South China Sea (SCS), however, such in situ data are often lacking or obsolete (perhaps from half a century ago) for most coastal waters around its islands and reefs. Here, we combine multispectral data collected by MODIS and Landsat to estimate bottom depth and albedo for four coral reef regions in the SCS, with results partially validated by some scarce in situ data. The waters in these remote regions are oligotrophic whose optical properties can be well derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements when the waters are optically deep. The MODIS-derived optical properties are used to estimate the water column attenuation to the Landsat measurements over shallow waters, thus eliminating the requirement of model tuning using field measured water depths. The model is applied to four Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) images covering Pratas Atoll, Woody Island, Scarborough Shoal, and North Danger Reefs. The retrieved bathymetry around Pratas Atoll and North Danger Reefs are validated with some in situ data between 1 and 25 m. The relative difference and root mean square difference between the two measurements were 17% and 1.6 m, for Pratas Atoll and 11% and 1.1 m for North Danger Reefs, respectively. These results suggest that the approach developed here may be extended to other shallow, clear waters in the SCS.

Acknowledgements

We thank the United States Geological Survey (USGS) for providing the Landsat TM and ETM+ data. We also acknowledge the Giovanni data system developed and maintained by the United States NASA GES DISC, and thank the NASA MODIS team for providing MODIS data used in this study. The comments from two anonymous reviewers are appreciated.

Finding

This work was supported by the National Nature Science Foundation of China [grant Nos. 40906087 and 60638020]; National Key Basic Research Programme of China [grant No. 2012CB957704]; the University of South Florida.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.