361
Views
6
CrossRef citations to date
0
Altmetric
Ocean colour remote sensing

Seasonal evolution of the interannual variability of chlorophyll-a concentration and its forcing factors in the northwestern Pacific from 1998 to 2010

, , , , &
Pages 4138-4155 | Received 15 Aug 2013, Accepted 30 Jan 2014, Published online: 04 Jun 2014
 

Abstract

The northwestern Pacific Ocean is a complex region with significant biological spatial variations on a seasonal timescale. To investigate the joint variation patterns on both seasonal and interannual timescales, a season-reliant empirical orthogonal function (S-EOF) analysis was applied to seasonal mean chlorophyll-a concentration (chl-a) anomalies in the northwestern Pacific Ocean during the period 1998–2010. The first two dominant modes accounted for nearly 31% of the total interannual variance, with the second S-EOF mode (S-EOF2) lagging behind the first S-EOF mode (S-EOF1) by one year. S-EOF1 featured a strong variation pattern to the north of 30° N, with maximum chl-a in winter and minimum chl-a in summer. However, S-EOF2 indicated an opposite seasonally evolving pattern compared with S-EOF1, with chl-a increasing along the Kuroshio and extension current from boreal winter to autumn. Both these modes revealed significant relationships with climate-related indices. The two modes corresponded to the central Pacific (CP) La Niña developing episodes and the turnaround from eastern Pacific (EP) La Niña to CP El Niño, respectively. Both modes were associated with the cold phase of the Pacific Decadal Oscillation, which played an important role in prolonging the impact of the El Niño/Southern Oscillation on chl-a seasonal evolution from 1998 to 2010. In addition, we discuss the possible factors dominating chl-a seasonal variation, in terms of the subregions of the northwestern Pacific Ocean. In the subtropical northwestern Pacific Ocean (15° N – 30° N), the chl-a growth was primarily nutrient-limited, whereas in the mid-latitude northwestern Pacific Ocean (35° N – 50° N), the chl-a growth was mainly light-limited.

Funding

The research was supported by the director project (No. Y2ZZ18101B) supported by Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, combined with the National Natural Science Foundation of China [grant number 41371385] and the National Key Basic Research Programme of China [grant number 2009CB723903].

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.