376
Views
19
CrossRef citations to date
0
Altmetric
Articles

Satellite remote sensing of total ozone column (TOC) over Pakistan and neighbouring regions

, , , , &
Pages 1038-1054 | Received 10 Jul 2014, Accepted 03 Dec 2014, Published online: 23 Feb 2015
 

Abstract

Total ozone column (TOC) obtained from the Ozone Monitoring Instrument (OMI) on board the Aura satellite was utilized to examine the spatio-temporal distribution of atmospheric ozone over Pakistan and adjoining regions of Afghanistan, India, and Iran for October 2004 to March 2014. This region has not yet been evaluated in greater detail. A yearly spatial averaged value of 278 ± 2 DU was found over the region. A decadal increase of 1.3% in TOC value over study region was observed for the first time. Large spatial and temporal variability of TOC was found over the study region. Elevated ozone columns were observed over the regions with high NO2 and CO concentrations. Analysis indicated that Srinagar city has the highest averaged value of 290 ± 3 DU whereas Jodhpur city showed the highest increasing trend of 1.9% per decade. A monthly averaged maximum value of 289 ± 8 DU and a minimum of 264 ± 5 DU were found during April and November, respectively, over the region. January showed a decreasing trend of −0.8% and February exhibited the highest increasing trend of 5.1% per decade. Forward trajectory analysis showed the possibility of ozone transport from eastern parts of the study region towards the Indian Ocean (Bay of Bengal) through the subtropical jet stream creating low values at higher meridians in October. TOC data deduced from OMI and the Atmospheric Infrared Sounder were compared to check the level of correlation and the results showed significant correlation (= 0.75) and an acceptable average relative difference of 4.2%.

Acknowledgments

We greatly acknowledge NASA’s teams for OMI–TOC, AIRS–TOC, OMI–NO2, AIRS–CO, and MODIS fire pixel count data sets and NOAA’s team responsible for the HYSPLIT model. We are deeply indebted to the EDGAR project team for anthropogenic GHGs emission data. We also thank the anonymous referees for their constructive suggestions to improve this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.