331
Views
10
CrossRef citations to date
0
Altmetric
Articles

Spatial analysis of the homogeneity of the land surface temperature in three Spanish test sites

, &
Pages 4793-4807 | Received 31 Dec 2014, Accepted 09 Apr 2015, Published online: 30 Jul 2015
 

Abstract

Calibration and validation (cal/val) are key activities to test the data quality acquired from satellite-based instruments, as well as to report the accuracy of derived products such as the land surface temperature (LST). Calibration of thermal infrared (TIR) data and validation of LST products at low spatial resolution requires the identification of large and homogeneous areas, which is a difficult task. In this work, spatial and temporal homogeneity of LST was analysed over three Spanish regions: the agricultural area of Barrax, Doñana National Park, and Cabo de Gata Natural Park. For this purpose, very high spatial resolution (approximately 3 m) imagery acquired with the Airborne Hyperspectral Scanner (AHS) in the framework of different field campaigns and high–medium spatial resolution (approximately 100 m) imagery acquired with the Landsat-8 (L8) TIR sensor (TIRS) have been used to retrieve homogeneity of high–medium and low spatial resolution sensors, respectively. Different LST retrieval algorithms were applied to AHS and TIRS to compare the LST for a given pixel against the LST of neighbour pixels through the computation of the root mean square error (RMSE). The results obtained from the analysis of LST derived from AHS data over Barrax and Doñana test sites show that part of these regions have an RMSE lower than 1 K, which is consistent with the accuracy of the LST validation (between 0.5 and 1.5 K). The analysis of LST derived from the TIRS shows that some parts of Doñana and Cabo de Gata sites have a mean RMSE of 1 K over the period of a year, with maximal homogeneity in autumn and winter (lower than 1 K) and minimal in spring and summer (around 2 K). These results are lower than the accuracy of the LST validation (approximately 2 K). The results show the usefulness of these three test sites to perform cal/val activities for both low and high spatial resolution sensors. The methodology presented in this study also allows the identification of suitable areas for future cal/val activities.

Additional information

Funding

This work was supported by the European Union [CEOP-AEGIS, project FP7-ENV-2007-1 Proposal No. 212921] and the Ministerio de Economía y Competitividad [CEOS-Spain, project AYA2011-29334-C02-01].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.