1,123
Views
54
CrossRef citations to date
0
Altmetric
Review article

A generalization of spatial and temporal fusion methods for remotely sensed surface parameters

, , , &
Pages 4411-4445 | Received 11 Feb 2015, Accepted 11 Aug 2015, Published online: 07 Sep 2015
 

Abstract

Remotely sensed surface parameters, such as vegetation index, leaf area index, surface temperature, and evapotranspiration, show diverse spatial scales and temporal dynamics. Generally the spatial and temporal resolutions of remote-sensing data should match the characteristics of surface parameters under observation. These requirements sometimes cannot be provided by a single sensor due to the trade-off between spatial and temporal resolutions. Many spatial and temporal fusion (STF) methods have been proposed to derive the required data. However, the methodology suffers from disorderly development. To better inform future research, this study generalizes the existing methods from around 100 studies as spatial or temporal categories based on their physical assumptions related to spatial scales and temporal dynamics. To be specific, the assumptions are related to the scale invariance of the temporal information and temporal constancy of the spatial information. The spatial information can be contexture or spatial details. Experiments are conducted using Landsat data acquired on 13 dates in two study areas and simulated Moderate Resolution Imaging Spectroradiometer (MODIS) data. The results are presented to demonstrate the typical methods from each category. This study concludes the following. (1) Contexture methods depend heavily on how components maps (contexture) are defined. They are not recommended except when components maps can be estimated properly from observed images. (2) The spatial and temporal adaptive reflectance fusion model (STARFM) and enhanced STARFM (ESTARFM) methods belong to the temporal and spatial categories, respectively. Thus, STARFM and ESTARFM should be better applied to temporal variance – dominated and spatial variance – -dominated areas, respectively. (3) Non-linear methods, such as the sparse representation-based spatio-temporal reflectance fusion model, can successfully address land-cover changes in addition to phonological changes, thereby providing a promising option for STF problems in the future.

Acknowledgements

We would like to thank the anonymous reviewers for valuable comments and suggestions.

Additional information

Funding

This research was funded in part by the National Science Foundation of China [grant number 41371417] and in part by the Hong Kong Research Grant Council [grant number CUHK 444612].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.