376
Views
8
CrossRef citations to date
0
Altmetric
Articles

Detection of mountain pine beetle-killed ponderosa pine in a heterogeneous landscape using high-resolution aerial imagery

, , &
Pages 5353-5372 | Received 03 Dec 2014, Accepted 08 Sep 2015, Published online: 07 Oct 2015
 

Abstract

Previous studies have used remote-sensing images to map tree mortality caused by mountain pine beetle (Dendroctonus ponderosae; MPB) in relatively homogeneous lodgepole pine (Pinus contorta) forests; however, classification methods have not been tested for the patchy landscape of ponderosa pine-dominated (Pinus ponderosae) montane forests characterized by highly variable tree density. This study explores two supervised classification methods to identify MPB-caused mortality (red attack) in heterogeneous montane forests of the Colorado Front Range using 1 m-resolution 2011 imagery of the National Agriculture Imagery Program (NAIP): maximum likelihood using the red, green, and blue bands, and the red-green index (RGI), and a thresholding technique using the RGI. Two variations of the RGI threshold method were also explored: the addition of a green-band threshold and the incorporation of a focal analysis. Evaluation pixels were used to assess the accuracy of the classification methods. The maximum likelihood (97 Percentage Correctly Classified (PCC); 11% error of commission for red attack) and RGI threshold (85 PCC; 46% error of commission for red attack) classification methods overestimated the red attack. The RGI and green band threshold classification reduced the error of commission (5%) and had high overall accuracy (97 PCC). In a comparison of classification methods across tree-density sites, we found the maximum likelihood classification had a very high accuracy in the high-density site (95 PCC), but substantially lower accuracy in the low-density site (85 PCC) due to the presence of more visible cover types. The RGI threshold classification with the green band constraint produced more consistent PCCs across tree densities: high (93.7 PCC), moderate (95.2 PCC), and low (92.0 PCC). Our results indicate forest structure may affect the classification accuracy and should be considered when selecting a classification method for a landscape.

Acknowledgements

We thank Timothy Warner and two anonymous reviewers for their comments. We thank Sarah Hart, Monica Rother, Teresa Chapman, Robert Andrus, Alan Tepley, Julia Hicks, and Cameron Naficy for feedback on methods and analyses.

ORCID

Stefan Leyk http://orcid.org/0000-0001-9180-4853

Additional information

Funding

This research was supported by the National Science Foundation award 1002665.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.