461
Views
21
CrossRef citations to date
0
Altmetric
Articles

The application of ensemble techniques for land-cover classification in arid lands

&
Pages 5613-5636 | Received 01 May 2014, Accepted 26 Sep 2015, Published online: 16 Nov 2015
 

Abstract

Robust classification approaches are required for accurate classification of complex land-use/land-cover categories of desert landscapes using remotely sensed data. Machine-learning ensemble classifiers have proved to be powerful for the classification of remotely sensed data. However, they have not been evaluated for classifying land-cover categories in desert regions. In this study, the performance of two machine-learning ensemble classifiers – random forests (RF) and boosted artificial neural networks – is explored in the context of classification of land use/land cover of desert landscapes. The evaluation is based on the accuracy of classification of remotely sensed data, with and without integration of ancillary data. Landsat-5 Thematic Mapper data captured for a desert landscape in the north-western coastal desert of Egypt are used with ancillary variables derived from a digital terrain model to classify 13 different land-use/land-cover categories. Results show that the two ensemble methods produce accurate land-cover classifications, with and without integrating spectral data with ancillary data. In general, the overall accuracy exceeded 85% and the kappa coefficient (κ) attained values over 0.83. The integration of ancillary data improved the performance of the boosted artificial neural networks by approximately 5% and the random forests by 9%. The latter showed overall higher accuracy; however, boosted artificial neural networks showed better generalization ability and lower overfitting tendencies. The results reveal the merit of applying ensemble methods to integrated spectral and ancillary data of similar desert landscapes for achieving high classification accuracies.

Additional information

Funding

This work was supported by Alexandria University, Egypt [1/2/101- 2006/2007].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.