413
Views
13
CrossRef citations to date
0
Altmetric
Articles

The application of polynomial analyses to detect global vegetation dynamics during 1982–2012

, , , &
Pages 1568-1584 | Received 24 May 2015, Accepted 03 Jan 2016, Published online: 07 Mar 2016
 

ABSTRACT

Use of the normalized difference vegetation index (NDVI) to build long-term vegetation trends is one of the most effective techniques for identifying global environmental change. Trend identification can be achieved by ordinary least squares (OLS) analysis or the Theil–Sen (TS) procedure with a Mann–Kendall (MK) significance test, and these linear regression approaches have been widely used. However, vegetation changes are not linear, and thus the response of vegetation to global climate change may follow non-linear trends. In this article, a polynomial trend-fitting method, which uses stepwise regression and expands on previous research, is presented. With an improved fitting ability, this procedure may reveal trends that were concealed by linear fitting methods. Globally, the traditional TS-MK method reveals significant greening trends for 37.27% of vegetated land, and significant browning trends for 7.98%. Using the polynomial analysis, 34.62% of pixels were fitted by high-order trends. The significant greening trends covered up to 30% of cultivated land, thus indicating that cultivated vegetation may be increasing faster than natural vegetation. Significant vegetation browning mostly occurred in sparse vegetation areas, which suggests that vegetation growth may be more sensitive to climate change in arid regions. Our results show that use of polynomial analysis can help further elucidate global NDVI trends.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [41330747];

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.