376
Views
17
CrossRef citations to date
0
Altmetric
Articles

Retrieving understorey dynamics in the Australian tropical savannah from time series decomposition and linear unmixing of MODIS data

, , &
Pages 1445-1475 | Received 31 Jul 2015, Accepted 06 Feb 2016, Published online: 02 Mar 2016
 

ABSTRACT

Retrieval from remote sensing of separate temporal dynamics for the understorey layer in tropical savannahs would be beneficial for monitoring fuel loads, biomass for livestock, interrelationships between trees and grasses, and modelling of savannah systems. In this study, we combined unmixing of fractional cover with normalized difference vegetation index (NDVI) and the short wave infrared ratio (SWIR32) with time series decomposition of the NDVI to attempt to fully resolve the dynamics of the herbaceous understorey in the Australian tropical savannah based on the fractions of photosynthetic herbaceous vegetation (FPVH) and non-photosynthetic vegetation (FNPV), from the woody overstorey, represented by the fraction of photosynthetic vegetation in the tree canopy (FPVW). Evaluation of FPVH against field data gave moderate relationships between predicted and observed values (R2 between 0.5 and 0.6); since semivariogram metrics of representativeness indicated that field sites were relatively unrepresentative of variation at the Moderate Resolution Imaging Spectroradiometer MODIS) pixel scale. Both FPVW and FPVH produced strong linear relationships (root mean square error < 0.1 units) with high-resolution Orbview 3 cover fractions classified from tasselled cap transformations. However, FNPVH (non-photosynthetic herbaceous cover fraction) retrievals at southern arid locations produced an evaluation relationship with a greater deviation from the 1:1 line than for northern locations. This suggested that there may be limitations on the NDVI–SWIR32 unmixing approach in more sparsely vegetated savanna. Maps of average annual maximum FPVH, FNPVH, and total herbaceous cover fraction could be used as indicators of savannah productivity and landscape health. However, close examination of the limitations of the NDVI–SWIR32 response may be required for application of this method in other global savannahs.

Acknowledgements

We thank Dr Peter Scarth of the QLD Department of Science, Information Technology, Innovation and the Arts for helpful comments on technical issues pertaining to illumination effects and Australian savannahs.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was partially supported by a grant from NASA [Contract #NNX10AH20G].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.