560
Views
20
CrossRef citations to date
0
Altmetric
Articles

Estimation of spatially enhanced soil moisture combining remote sensing and artificial intelligence approaches

, , &
Pages 5605-5631 | Received 19 Mar 2016, Accepted 19 Sep 2016, Published online: 19 Oct 2016
 

ABSTRACT

The main objective of this study is to combine remote-sensing and artificial intelligence (AI) approaches to estimate surface soil moisture (SM) at 100 m spatial and daily temporal resolution. The two main variables used in the Triangle method, that is, land-surface temperature (LST) and vegetation cover, were downscaled and calculated at 100 m spatial resolution. LSTs were downscaled applying the Wavelet-Artificial Intelligence Fusion Approach (WAIFA) on Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imageries. Vegetation fractions were also estimated at 100 m spatial resolution using linear spectral un-mixing and Wavelet–AI models. Vegetation indices (VIs) were replaced with the vegetation fractions obtained from sub-pixel classification in the Ts–VI triangle space. The downscaled data were then used for calculating the evaporative fraction (EF), temperature-vegetation-dryness index (TVDI), vegetation temperature condition index (VTCI), and temperature-vegetation index (TVX) at 100 m spatial resolution. Thereafter, surface SM modelling was performed using a combination of Particle Swarm Optimization with Adaptive Neuro Fuzzy Inference System (PSO-ANFIS) and Support Vector Regression (PSO-SVR) modelling approaches. Results showed that the best input data set to estimate SM includes EF, TVDI, Ts, Fvegetation, Fsoil, temperature (T), precipitation at time t (Pt, Pt – 1, Pt – 2), and irrigation (I). It was also confirmed that PSO-SVR outperformed the PSO-ANFIS modelling approach and could estimate SM with a coefficient of determination (R2) of 0.93 and a root mean square error (RMSE) of 1.29 at 100 spatial resolution. Range of error was limited between −2.64% and 2.8%. It was also shown that the method proposed by Tang et al., (2010) improved the final SM estimations.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.