179
Views
3
CrossRef citations to date
0
Altmetric
Articles

Locally adaptive linear mixture model-based super-resolution land-cover mapping based on a structure tensor

, , &
Pages 5802-5825 | Received 07 Apr 2016, Accepted 07 Oct 2016, Published online: 03 Nov 2016
 

ABSTRACT

Super-resolution land-cover mapping (SRM) is a technique for generating land-cover thematic maps with a finer spatial resolution than the input image. Linear mixture model-based SRM (LSRM) is applied directly to a remotely sensed image and is composed of a spatial term that integrates the land-cover spatial pattern prior information, a spectral term that assumes that the spectral signature of each mixed pixel is composed of a weighted linear sum of endmember spectral signatures within that pixel and a balance parameter that defines the weight of the spatial term. The traditional LSRM adopts an isotropic spatial autocorrelation model in the land-cover spatial term for different classes and a fixed balance parameter for the entire image, and ignores the image local properties. The class boundaries are at risk of oversmoothing and may be imprecise, and the homogeneous regions may be unsmoothed and contain speckle-like artefacts in the result. This study proposes a locally adaptive LSRM (LA-LSRM) that integrates image local properties to predict fine spatial resolution pixel labels. The structure tensor is applied to detect the image local information. The LA-LSRM spatial term is locally adaptive and is composed of an anisotropic spatial autocorrelation model in which the spatial autocorrelation orientations of different classes may vary. The LA-LSRM balance parameter is locally adaptive to the different regions of the image. Such parameter obtains a relatively large value when the fine-resolution pixel is located in the homogeneous region to remove speckle-like artefacts and a relatively small value when the fine-resolution pixel is at the class boundary to preserve the edge. The LA-LSRM performance was assessed using a simulated multi-spectral image, an IKONOS multi-spectral image, a hyperspectral image produced by Airborne Visible/Infrared Imaging Spectrometer and a hyperspectral image produced by reflective optics system imaging spectrometer. Results show that the homogeneous regions were smoothed, the boundaries were better preserved and the overall accuracies were increased by LA-LSRM compared with traditional LSRM in all experiments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported in part by the Natural Science Foundation of China [grant number 41301398]; in part by the Wuhan ChenGuang Youth Sci.&Tech. Project [grant number 2014072704011254]; in part by the National Basic Research Program (973 Program) of China [grant number 2013cb733205]; in part by the National Key Technologies Research and Development Program of China [grant number 2016YFB0502604].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.