566
Views
29
CrossRef citations to date
0
Altmetric
Articles

Accurate crop-type classification using multi-temporal optical and multi-polarization SAR data in an object-based image analysis framework

, & ORCID Icon
Pages 4130-4155 | Received 15 Jun 2015, Accepted 30 Mar 2017, Published online: 10 May 2017
 

ABSTRACT

Accurate crop-type classification is a challenging task due, primarily, to the high within-class spectral variations of individual crops during the growing season (phenological development) and, second, to the high between-class spectral similarity of crop types. Utilizing within-season multi-temporal optical and multi-polarization synthetic aperture radar (SAR) data, this study introduces a combined object- and pixel-based image classification methodology for accurate crop-type classification. Particularly, the study investigates the improvement of crop-type classification by using the least number of multi-temporal RapidEye (RE) images and multi-polarization Radarsat-2 (RS-2) data utilized in an object- and pixel-based image analysis framework. The method was tested on a study area in Manitoba, Canada, using three different classifiers including the standard Maximum Likelihood (ML), Decision Tree (DT), and Random Forest (RF) classifiers. Using only two RE images of July and August, the proposed method results in overall accuracies (OAs) of about 95%, 78%, and 93% for the ML, DT, and RF classifiers, respectively. Moreover, the use of only two quad-pol images of RS-2 of June and September resulted in OAs of 92%, 75%, and 90% for the ML, DT, and RF classifiers, respectively. The best classification results were achieved by the synergistic use of two RE and two RS-2 images. In this case, the overall classification accuracies were 97% for both ML and RF classifiers. In addition, the average producer’s accuracies of 95% and 96% were achieved by the ML and RF classifiers, respectively, whereas the average user accuracy was 94% for both classifiers. The results indicated promising potentials for rapid and cost-effective local-scale crop-type classification using a limited number of high-resolution optical and multi-polarization SAR images. Very accurate classification results can be considered as a replacement for sampling the agricultural fields at the local scale. The result of this very accurate classification at discrete locations (approximately 25 × 25 km frames) can be applied in a separate procedure to increase the accuracy of crop area estimation at the regional to provincial scale by linking these local very accurate spatially discrete results to national wall-to-wall continuous crop classification maps.

View correction statement:
Corrigendum

Acknowledgement

This project was funded through the Canadian Space Agency (CSA) Government Related Initiatives Program (GRIP Project: Towards an Earth Observation-based Canadian Agricultural Monitoring Framework).

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This project was funded through the Canadian Space Agency (CSA) Government Related Initiatives Program (GRIP Project: Towards an Earth Observation-based Canadian Agricultural Monitoring Framework).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.