546
Views
19
CrossRef citations to date
0
Altmetric
Articles

Predicting the spectral information of future land cover using machine learning

ORCID Icon, , , &
Pages 5592-5607 | Received 24 Oct 2016, Accepted 08 Jun 2017, Published online: 22 Jun 2017
 

ABSTRACT

Application of machine learning models to study land-cover change is typically restricted to the change detection of categorical, i.e. classified, land-cover data. In this study, our aim is to extend the utility of such models to predict the spectral band information of satellite images. A Random Forests (RF)-based machine learning model is trained using topographic and historical climatic variables as inputs to predict the spectral band values of high-resolution satellite imagery across two large sites in the western United States, New Mexico (10,570 km2), and Washington (9400 km2). The model output is used to obtain a true colour photorealistic image and an image showing the normalized difference vegetation index values. We then use the trained model to explore what the land cover might look like for a climate change scenario during the 2061–2080 period. The RF model achieves high validation accuracy for both sites during the training phase, with the coefficient of determination (R2) = 0.79 for New Mexico site and R2 = 0.73 for Washington site. For the climate change scenario, prominent land-cover changes are characterized by an increase in the vegetation cover at the New Mexico site and a decrease in the perennial snow cover at the Washington site. Our results suggest that direct prediction of spectral band information is highly beneficial due to the ability it provides for deriving ecologically relevant products, which can be used to analyse land-cover change scenarios from multiple perspectives.

Acknowledgements

This work was supported by the National Science Foundation under Award Number 1027870 (CDI-Type Small Resources Supercomputing: High Performance Computing in the Earth Sciences).

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Science Foundation under Award Number 1027870 (CDI-Type Small Resources Supercomputing: High Performance Computing in the Earth Sciences).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.