133
Views
8
CrossRef citations to date
0
Altmetric
Articles

Pruning optimum-path forest ensembles using metaheuristic optimization for land-cover classification

, , , &
Pages 5736-5762 | Received 28 Sep 2016, Accepted 14 Jun 2017, Published online: 05 Jul 2017
 

ABSTRACT

Machine learning techniques have been actively pursued in the last years, mainly due to the increasing number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, we shall highlight ensemble pruning strategies, which provide heuristics to select from a collection of classifiers the ones that can really improve recognition rates and provide efficiency by reducing the ensemble size prior to combining the model. In this article, we present and validate an ensemble pruning approach for Optimum-Path Forest (OPF) classifiers based on metaheuristic optimization over general-purpose data sets to validate the effectiveness and efficiency of the proposed approach using distinct configurations in real and synthetic benchmark data sets, and thereafter, we apply the proposed approach in remote-sensing images to investigate the behaviour of the OPF classifier using pruning strategies. The image data sets were obtained from CBERS-2B, LANDSAT-5 TM, IKONOS-2 MS, and GEOEYE sensors, covering some areas of Brazil. The well-known Indian Pines data set was also used. In this work, we evaluate five different optimization algorithms for ensemble pruning, including that Particle Swarm Optimization, Harmony Search, Cuckoo Search, and Firefly Algorithm. In addition, we performed an empirical comparison between Support Vector Machine and OPF using the strategy of ensemble pruning. Experimental results showed the effectiveness and efficiency of ensemble pruning using OPF-based classification, especially concerning ensemble pruning using Harmony Search, which shows to be effective without degrading the performance when applied to large data sets, as well as a good data generalization.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This authors are grateful to FAPESP grants #2014/16250-9 and #2014/12236-1, CNPq grant #306166/2014-3, as well as CAPES grant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.