658
Views
23
CrossRef citations to date
0
Altmetric
Articles

A comparison of pixel-based decision tree and object-based Support Vector Machine methods for land-cover classification based on aerial images and airborne lidar data

, , , &
Pages 7176-7195 | Received 24 Mar 2017, Accepted 19 Aug 2017, Published online: 31 Aug 2017
 

ABSTRACT

Precisely monitoring land cover/use is crucial for urban environmental assessment and management. Various classification techniques such as pixel-based and object-based approaches have advantages and disadvantages. In this article, based on our experiment data from an unmanned platform carried lidar scanner system and camera, we explored and compared classification accuracies of pixel-based decision tree (DT) and object-based Support Vector Machine (SVM) approaches. Lidar height information can improve classification accuracy based on either object-based SVM or pixel-based DT. From total classification accuracy, object-based SVM was higher than that of pixel-based DT classification, and total accuracy and kappa coefficient of the former were 92.71% and 0.899, respectively. However, pixel-based DT outperformed object-based SVM when classifying small ‘scatter’ tree along roads. Additionally, in order to evaluate the accuracy of pixel-based DT and object-based SVM, we added benchmark data of ISPRS to compare the classification results of two methods. Object-based SVM classification methods by combining aerial imagery with lidar height information can achieve higher classification accuracy. And, accurately extracting tree class of different landscape pattern should select appropriate machine-learning algorithms. Comparison of the results on two methods will provide a reference for selecting a particular classification approaches according to local conditions.

Acknowledgements

We are grateful for support from the National Natural Science Foundation of China: [NSFC, Grant Number 41371434]. We thank ISPRS Working Group II/4 for providing the benchmark data.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China: [Grant Number 41371434].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.