434
Views
10
CrossRef citations to date
0
Altmetric
Articles

Mapping shallow nearshore benthic features in a Caribbean marine-protected area: assessing the efficacy of using different data types (hydroacoustic versus satellite images) and classification techniques

, &
Pages 1117-1150 | Received 21 Dec 2016, Accepted 11 Oct 2017, Published online: 03 Nov 2017
 

ABSTRACT

Various benthic mapping methods exist but financing and technical capacity limit the choice of technology available to developing states to aid with natural resource management. Therefore, we assessed the efficacy of using a single-beam echosounder (SBES), satellite images (GeoEye-1 and WorldView-2) and different image (pixel-based Maximum Likelihood Classifier (MLC), and an object-based image analysis (OBIA)) and hydroacoustic classification and interpolation techniques, to map nearshore benthic features at the Bluefields Bay marine protected area in western Jamaica (13.82 km2 in size). A map with three benthic classes (submerged aquatic vegetation (SAV), bare substrate, and coral reef) produced from a radiometrically corrected, deglinted and water column-corrected WorldView-2 image had a marginally higher accuracy (3%) than that of a map classified from a similarly corrected GeoEye-1 image. However, only one of the two extra WorldView-2 image bands (coastal) was used because the yellow band was completely attenuated at depths ≥3.7 m. The coral reef class was completely misclassified by the MLC and had to be contextually edited. The contextually edited MLC map had a higher overall accuracy (OA) than the OBIA map (86.7% versus 80.4%) and maps that were not contextually edited. But, the OBIA map had a higher OA than a MLC map without edits. Maps produced from the images also had a higher accuracy than the SAV map created from the acoustic data (OAs >80% and kappa >0.67 versus 76.6% and kappa = 0.32). SAV classification was comparable among the classified SBES SAV data points and all the final maps. The total area classified as SAV was marginally larger for satellite maps; however, the total area classified as bare substrate using the images was twice as large. A substrate map with three classes (silt, sand, and coral/hard bottom) produced from the SBES data using a random forest classifier and a Markov chain interpolator had a higher accuracy than a substrate map produced using a fractal dimension classifier and an indicator krig (the default choice) (72.4% versus 53.5%). The coral reef class from the SBES, OBIA, and contextually edited maps had comparable accuracies, but covered a much smaller area in the SBES maps because data points were lost during the interpolation process. The use of images was limited by turbidity levels and cloud cover and it yielded lower benthic detail. Despite these limitations, satellite image classification was the most efficacious method. If greater benthic detail is required, the SBES is more suitable or more effort is required during image classification. Also, the SBES can be operated in areas with turbid waters and greater depths. However, it could not be used in very shallow areas. Also, processing and interpolation of data points can result in a loss of resolution and introduces spatial uncertainty.

Acknowledgments

Portions of this work were presented and published in thesis form in fulfilment of the requirements for the MSc degree for Karen McIntyre from University of Lund. We would like to thank the Fisheries Division, the Ministry of Agriculture and Fisheries for their support and for providing GIS and other types of data/information. Caribsave provided logistical support, and our acoustic and ground truthing exercises were aided by the Bluefield’s Bay Friendly Fishermen’s Society. The SBES unit was purchased under a previous project funded by the MacArthur Foundation. Mona Geoinformatics provided GIS data, particularly the vector maps used in some of our figures. Professor Byron Wilson provided the boat used for 90% of the acoustic survey. Also, the DigitalGlobe Foundation graciously provided the images.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The SBES unit was purchased under a previous project funded by the MacArthur Foundation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.