621
Views
24
CrossRef citations to date
0
Altmetric
Articles

Comparison of a commercial and home-assembled fixed-wing UAV for terrain mapping of a post-mining site under leaf-off conditions

, , , , &
Pages 555-572 | Received 30 Dec 2017, Accepted 10 Aug 2018, Published online: 10 Sep 2018
 

ABSTRACT

Unmanned aerial vehicle (UAV) platforms are rapidly becoming popular in many research and industry sectors. Due to their relatively low purchase price and the fact they can be used to monitor areas that are difficult or even unsafe to access, they have been increasingly used in land surveying and mapping of smaller areas. Numerous UAV platforms equipped with various cameras are increasingly available on the market, differing in their suitability for environmental mapping. Surveyors therefore face a question whether to buy or assemble their own UAV. The objective of this study is to assess the performance of two fixed-wing UAV systems for land survey and mapping applications. In particular, we: (1) compared a commercial eBee platform equipped with a Sony Cybershot DSC-WX220 camera with zoom lens and a home assembled EasyStar II equipped with Nikon Coolpix A with a lens of fixed focal length to find out if a home-assembled solution can compete with specialized commercial platform; (2) investigated the utilization of UAV images acquired under leaf-off conditions for digital terrain model (DTM) generation with respect to vegetation cover (steppes and forests); (3) assessed whether an increase in the image quantity can compensate for a lower quality of images; and (4) compared the DTM derived from UAV imagery with the official Czech Republic airborne laser scanning (ALS)-derived DTM. One flight with Easystar II and two perpendicular flights with eBee were performed. From these three flights, four point clouds were derived (one from each flight, and one resulting from a combination of two eBee flights), supplemented with four ground filtered point clouds. The accuracy of point clouds and DTM was assessed through a comparison with a conventional GNSS survey. We successfully identified the bare ground during the leaf-off period in the deciduous forest using images from both platforms. Point densities of point clouds acquired with Easystar II exceeded the densities of those acquired with eBee even after combining images from two eBee flights. Root mean square error of all derived point clouds ranged between 0.11 and 0.19 m, exceeding the accuracy of a nationwide ALS-derived DTM in both forest and open steppe areas. The most accurate point cloud was acquired using Easystar II. This is likely due to a combined effect of the quality of onboard cameras, camera settings and environmental conditions during the flight. For users who prefer to have greater control over their options rather than being dependent on the commercially available kit solution, home-assembled kits utilizing drones capable of carrying any camera available on the market may be an advantage.

Acknowledgments

We are grateful to two anonymous reviewers and Jaroslav Janošek for their comments that improved the quality of the manuscript. This work was supported by the Grant Agency of the Czech Technical University in Prague under Grant No. SGS17/067/OHK1/1T/11; the Internal Grant Agency of the Faculty of Environmental Sciences, CULS Prague under Grant number 20164242, and the Czech Science Foundation under Grant No. 17-17156Y.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Czech Science Foundation [Grant No. 17-17156Y];Grant Agency of the Czech Technical University in Prague [Grant No. SGS17/067/OHK1/1T/11]; Internal Grant Agency of the Faculty of Environmental Sciences, CULS Prague [Grant number 20164242]

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.