916
Views
36
CrossRef citations to date
0
Altmetric
Articles

A hybrid of deep learning and hand-crafted features based approach for snow cover mapping

, ORCID Icon &
Pages 759-773 | Received 18 Nov 2017, Accepted 25 Aug 2018, Published online: 20 Sep 2018
 

ABSTRACT

Monitoring the extent of snow cover plays a vital role for a better understanding of current and future climatic, ecological, and water cycle conditions. Previously, several traditional machine learning models have been applied for accomplishing this while exploring a variety of feature extraction techniques on various information sources. However, the laborious process of any amount of hand-crafted feature extraction has not helped to obtain high accuracies. Recently, deep learning models have shown that feature extraction can be made automatic and that they can achieve the required high accuracies but at the cost of requiring a large amount of labelled data. Fortunately, despite the absence of such large amounts of labelled data for this task, we can rely on pre-trained models, which accept red-green-blue (RGB) information (or dimensions-reduced spectral data). However, it is always better to include a variety of information sources to solve any problem, especially with the availability of other important information sources like synthetic aperture radar (SAR) imagery and elevation. We propose a hybrid model where the deep learning is assisted by these information sources which have until now been left out. Particularly, our model learns from both the deep learning features (derived from spectral data) and the hand-crafted features (derived from SAR and elevation). Such an approach shows interesting performance-improvement from 96.02% (through deep learning alone) to 98.10% when experiments were conducted for Khiroi village of the Himalayan region in India.

Acknowledgments

We are very grateful to Dr J. Koteshwar Rao for his valuable insights and discussion and Mr K. N. Sasidhar for proofreading the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.