408
Views
13
CrossRef citations to date
0
Altmetric
Articles

Urban object extraction using Dempster Shafer feature-based image analysis from worldview-3 satellite imagery

, ORCID Icon &
Pages 1092-1119 | Received 23 Dec 2017, Accepted 31 Aug 2018, Published online: 11 Oct 2018
 

ABSTRACT

A detailed and up-to-date land use of the urban environment is essentially required in many applications. Very high-resolution (VHR), Multispectral Scanner System (MSS) Worldview-3 (WV-3) satellite imagery provides detailed information on urban characteristics, which should be professionally mined. In this research, WV-3 was processed by machine learning (ML) methods to extract the most accurate urban features. Fuze-Go panchromatic sharpening in conjunction with atmospheric and topographic correction was initially utilized to increase the image quality and colour contrast. Three image analysis approaches including, current pixel-based image analysis (PBIA), object-based image analysis (OBIA) and new feature-based image analysis (FBIA) were implemented on WV-3 image. The k-nearest neighbour (k-NN), Naive Bayes (NB), support vector machine (SVM) classifiers were represented by PBIA, the Decision Tree (DT) classifier was examined as OBIA and the Dempster–Shafer (DS) fusion classifier was manifested for the first time as FBIA. In order to engage DS as FBIA, four types of Belief Masses, namely, Precision, Recall, Overall Accuracy, and kappa coefficient (ĸ) were implemented and compared to assign the most likelihood urban features. All the applied classifiers were also trained on the first site and then tested on another site to examine the transferability. The accuracy, reliability, and computational time of all classifiers were examined by confusion matrix and McNemar assessment. Results show improvements on the detailed urban extraction obtained using the proposed FBIA with 92.2% overall accuracy in compared with PBIA and OBIA. The FBIA result of urban extraction is more consistent when transferred to another study area and consumes much lesser time than OBIA. Also, the precision mass belief measurement achieved highest efficiency regarding receiver operating characteristic (ROC) curve rate.

Acknowledgments

This research is funded by the UTS under grant numbers 321740.2232335 and Blue-sky Grant 321740.2232357. Authors would like to thank two anonymous reviewers and Editor Dr. Sotaro Tanaka for their valuable comments which helped us to improve the quality of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the University of Technology Sydney [Grant numbers 321740.2232335 and Blue-sky Grant 32];

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.