450
Views
25
CrossRef citations to date
0
Altmetric
Articles

Densely connected deep random forest for hyperspectral imagery classification

, , , &
Pages 3606-3622 | Received 12 Mar 2018, Accepted 07 Aug 2018, Published online: 28 Nov 2018
 

ABSTRACT

In very recent years, deep learning based methods have been widely introduced for the classification of hyperspectral images (HSI). However, these deep models need lots of training samples to tune abundant parameters which induce a heavy computation burden. Therefore, most of these algorithms need to be accelerated with high-performance graphics processing units (GPU). In this paper, a new deep model–densely connected deep random forest (DCDRF) is proposed to classify the hyperspectral images. This model is composed of multiple forward connected random forests. The DCDRF has following merits: 1) It obtains satisfactory classification accuracy with a small number of training samples, 2) It can be run efficiently on the central processing unit (CPU), 3) Only a few parameters are involved during the training. Experimental results based on three hyperspectral images demonstrate that the proposed method can achieve better classification performance than the conventional deep learning based methods.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the the Fundamental Research Funds for the Central Universities [JB181708].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.