157
Views
5
CrossRef citations to date
0
Altmetric
Articles

Jitter compensation of ZiYuan-3 satellite imagery based on object point coincidence

, &
Pages 6116-6133 | Received 24 Jul 2018, Accepted 05 Jan 2019, Published online: 17 Mar 2019
 

ABSTRACT

Satellite jitter is a very important factor that affects the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM). The conventional affine transformation model is unable to compensate such periodic jitters. The sensor orientation accuracy is thereby worse than expected. To eliminate the influence of jitters and improve the orientation accuracy, a feasible jitter compensation method for ZiYuan-3 imagery based on object point coincidence is presented in this study. In this method, no actual ground control points (AGCPs) are required to estimate the jitter compensation parameters. First, numerous virtual object points are projected onto the image by using the RFM. Then, the residual errors between the image-space coordinates of the projected and corresponding points are used to detect the satellite jitters. Finally, two sinusoidal functions are used to model and compensate the jitters. Experimental results of the three ZiYuan-3 satellite images show that before the jitter compensation, the residual errors of the independent check points obviously show a sinusoidal pattern. These periodic errors cannot be effectively compensated by the affine transformation model even if the number of AGCPs is increased from 4 to 16. After the jitters are compensated with the estimated sinusoidal coefficients, the influence of jitters can be eliminated. The sensor orientation accuracies of the three images reach 0.852 pixels, 0.798 pixels, and 0.921 pixels, which are respectively 49.7%, 55.1%, 65.7% better than those achieved before the jitter compensation.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 61801331, 91738302.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the the National Natural Science Foundation of China [61801331, 91738302].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.