1,101
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Tree height mapping and crown delineation using LiDAR, large format aerial photographs, and unmanned aerial vehicle photogrammetry in subtropical urban forest

ORCID Icon &
Pages 5228-5256 | Received 14 Aug 2019, Accepted 01 Jan 2020, Published online: 12 Apr 2020
 

ABSTRACT

Accurately identified trees can serve as a basis of estimating forest variables through the individual tree-based approach. Increasing richness of remote sensing data also provides opportunities to explore the potential uses of various types of data sources. This study adopted three widely used remote sensing data, including airborne light detection and ranging (LiDAR), unmanned aerial vehicle (UAV) photography and traditional digital aerial photos (DAP), and aimed to investigate their potentials on estimating tree heights and extracting individual tree information in four forested sites in Hong Kong with different tree compositions. Image-based point clouds were generated through photogrammetry. Local maxima and region growing methods were adopted to identify treetops and delineate tree crowns, respectively, with different fixed and variable window size settings. Tree heights obtained from remote sensing datasets resulted in correlation coefficients (r) = 0.58–0.94 and root-mean-square errors (RMSE) = 1.33–3.78 m compared to field-measured values and similar levels of correspondences among the datasets. Point cloud characteristics were highlighted through point-based and profile-based analysis. The highest F-scores for treetop detections in each site ranged from 0.53 to 0.69 with variations caused by different window sizes and data sources. Matched rates of reference trees were positively correlated (r = 0.19–0.49) with geometric properties including diameter at breast height (DBH), tree height, crown area, and distance to the nearest neighbour. No single remote sensing dataset was clearly superior in all methodologies in this study, but unique properties were demonstrated in terms of both data acquisitions and analysis. Knowledge and testing on both characteristics of study areas and data sources were important when deciding the best window size parameters. Heterogeneity of forest environment could be a major factor hindering the delineation performance with further influences on plot-level difference and tree-level detectability.

Acknowledgements

We would like to thank Dr Holger Eichstaedt and Dimap HK Pty Limited for providing the LiDAR dataset. We are also grateful to the anonymous reviewer and editor for providing helpful insights and constructive comments on the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.