1,249
Views
83
CrossRef citations to date
0
Altmetric
Research Article

Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 286-321 | Received 20 Feb 2020, Accepted 23 Jun 2020, Published online: 10 Nov 2020
 

ABSTRACT

Hyperspectral image (HSI) usually holds information of land cover classes as a set of many contiguous narrow spectral wavelength bands. For its efficient thematic mapping or classification, band (feature) reduction strategies through Feature Extraction (FE) and/or Feature Selection (FS) methods for finding the intrinsic bands’ information are typically applied. Principal Component Analysis (PCA) is a frequently employed unsupervised linear FE method whereas cumulative-variance accumulation is used for selecting top features from PCA data. However, PCA can fail to extract intrinsic structure of HSI due to global variance consideration and domination by visible and near infrared bands while cumulative-variance accumulation has no capability to exploit non-linear relationships among the transformed features produced by PCA-based FE methods. Consequently, we propose an information theoretic normalized Mutual Information (nMI)-based minimum Redundancy Maximum Relevance (mRMR) non-linear measure to select the intrinsic features from the transformed space of our previously proposed Segmented-Folded-PCA (Seg-Fol-PCA) and Spectrally Segmented-Folded-PCA (SSeg-Fol-PCA) FE methods. We extensively analyse the effectiveness of the proposed unsupervised FE and supervised FS combinations Seg-Fol-PCA-mRMR and SSeg-Fol-PCA-mRMR with that of PCA-based existing linear and non-linear state-of-the-art methods. In addition, cumulative variance-based top features pick-up strategy is considered with all FE methods and Renyi quadratic entropy-based FS is used with Kernel Entropy Component Analysis (Ker-ECA). The experimental results illustrate that SSeg-Fol-PCA-mRMR and Seg-Fol-PCA-mRMR obtain highest classification result e.g. 95.39% and 95.03% respectively for agricultural Indian Pines HSI, and 96.58% and 95.30% respectively for urban Washington DC Mall HSI while the classification accuracies using all original features of the HSIs are 70.28% and 91.90% respectively. Moreover, the proposed SSeg-Fol-PCA-mRMR and Seg-Fol-PCA-mRMR outperform all investigated combinations of FE and FS using the real HSI datasets.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.