898
Views
17
CrossRef citations to date
0
Altmetric
Research Article

A hierarchical object detection method in large-scale optical remote sensing satellite imagery using saliency detection and CNN

, &
Pages 2827-2847 | Received 13 Nov 2019, Accepted 29 Jul 2020, Published online: 08 Jan 2021
 

ABSTRACT

Detecting geospatial objects, especially small, time-sensitive targets such as airplanes and ships in cluttered scenes, is a substantial challenge in large-scale, high-resolution optical satellite images. Directly detecting targets in countless image blocks results in higher false alarms and is also inefficient. In this paper, we introduce a hierarchical architecture to quickly locate related areas and detect these targets effectively. In the coarse layer, we use an improved saliency detection model that utilizes geospatial priors and multi-level saliency features to probe suspected regions in broad and complicated remote sensing images. Then, in the fine layer of each region, an efficacious end-to-end neural network that predicts the categories and locations of the objects is adopted. To improve the detection performance, an enhanced network, adaptive multi-scale anchors, and an improved loss function are designed to overcome the great diversity and complexity of backgrounds and targets. The experimental results obtained for both a public dataset and our collected images validated the effectiveness of our proposed method. In particular, for large-scale images (more than 500 km2), the adopted method far surpasses most unsupervised saliency models in terms of the performance in region saliency detection and can quickly detect targets within 1 minute, with 95.0% recall and 93.2% precision rates on average.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the the National Key Research and Development Program of China [No. 2016YFB0502603]; the National Natural Science Foundation of China [No.41771457].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.