342
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Comparison analysis of global methane concentration derived from SCIAMACHY, AIRS, and GOSAT with surface station measurements

, , , , , & show all
Pages 1823-1840 | Received 19 Mar 2019, Accepted 30 Sep 2020, Published online: 20 Dec 2020
 

ABSTRACT

CH4 (methane) is an important greenhouse gas that has a significant impact on the formation of, and change in, the global climate. Through the development of remote sensing technology, a series of remote sensing detectors to monitor CH4 sources and sinks have been launched into space. Although a series of studies have been conducted around the CH4 concentration retrieved by AIRS (The Atmospheric Infrared Sounder instrument), SCIAMACHY (The Scanning Imaging Absorption spectrometer for Atmospheric Chartography instrument), and GOSAT (The Greenhouse Gases Observing Satellite), there have been few comprehensive comparative studies between these three satellite results and ground-based data. In this article, the correlation coefficient, root-mean-square deviation (RMSD), and bias are used to evaluate the CH4 retrieved from satellite data. The results reveal that: AIRS can reflect the distribution and changes of CH4 all over the world. The space coverage of GOSAT is focused between 60°S to 60°N, and the correlation of GOSAT with land surface stations is generally better than that with ocean surface stations. The space coverage of SCIAMACHY is between GOSAT and AIRS. Though SCIAMACHY data show a poor consistency with surface measurements, SCIAMACHY can also reflect the spatial and temporal dynamic distribution of CH4 around the world to a certain extent.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [41501212]; Henan Colleges and Universities Key Scientific Research Project [18A170009]; The fundamental research project of MOST [2005DKA32300].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.