981
Views
29
CrossRef citations to date
0
Altmetric
Research Article

A phenological object-based approach for rice crop classification using time-series Sentinel-1 Synthetic Aperture Radar (SAR) data in Taiwan

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 2722-2739 | Received 24 Jun 2020, Accepted 10 Nov 2020, Published online: 07 Jan 2021
 

ABSTRACT

Spatial assessment of rice-cultivated areas is a crucial activity in Taiwan due to government initiatives to provide policymakers with reliable and timely information for devising successful rice grain import and export plans. The objective of this study is to develop a phenological object-based approach for collectively mapping patches of rice fields using the time-series Sentinel-1 Synthetic Aperture Radar (SAR) data. We processed the data for 2019 cropping seasons, following three main steps: (1) data pre-processing to construct the smooth twelve-day time-series composite vertical transmit and horizontal receive (VH) polarized data, (2) object-based image classification of rice-cultivated areas using phenological metrics, and (3) accuracy assessment of the mapping results. The classification maps compared with the government’s ground reference maps indicated satisfactory accuracies, with producer’s accuracies of 84.2% and 82.6% and user’s accuracies of 82.1% and 85.3% for the first and second crops, respectively. These results were reaffirmed by close agreement in area estimates between the satellite-derived rice area and government’s reference data at township level, with coefficient of determination (R2) values of 0.96 and 0.94 for the first and second crops, respectively. In spite of some error sources, including mixed-pixel issues and edge effects, that lowered the mapping accuracy, the results of this study have demonstrated that our mapping approach using the time-series Sentinel-1 VH data and information of crop phenology could be potentially applied at a larger scale in Taiwan and transferable to other regions for updating rice crop maps on a timely and frequent basis.

Acknowledgements

This research is financed by Taiwan Agricultural Research Institute (contract number: 1093052), and Taiwan Ministry of Science and Technology (contract number: 109-2927-I-008-501). The financial support is fully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Taiwan Agricultural Research Institute and Taiwan Ministry of Science and Technology.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.