257
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Thermal infrared inverse model for component temperatures of mixed pixels

Pages 2297-2309 | Received 23 Nov 2007, Accepted 20 Nov 2009, Published online: 20 Apr 2011
 

Abstract

Multiangular remote sensing data can be used to retrieve land surface component temperatures, which will have a broad application in the future. For higher resolution pixels of satellite radiometers, the component temperatures may be separated adequately by some methods. However, for coarse resolution pixels that contain a mixture of vegetation and bare soil, the component temperatures may not be retrieved robustly by traditional inversion methods. In this study, a thermal model-based algorithm was developed for mixed pixels. A simulation method was implemented to assess the performance of the algorithm. The method consisted of extensive radiative transfer simulations under a wide variety of Leaf Area Index (LAI) values in the vegetation part of directional thermal infrared (TIR) radiation, vegetation and soil emissivity, vegetation and soil temperatures, bare soil area ratio and downwelling longwave atmospheric radiation. The results indicate that the inversion error of the component temperatures does not exceed 0.5° when LAI values are less than 6.0. A field experiment was also conducted to assess the accuracy of the model. The experimental results indicate that even if the differences between the nadir and off-nadir radiative temperatures over a mixed pixel are small, the model can still determine the component temperatures accurately. A sensitivity analysis shows that an accuracy of less than 10% for LAI in the vegetation part and the bare soil area ratio is required to achieve a precision of 1 K for the component temperatures derived. An error of 1 K in the radiometric temperature leads to an error of 1 K in the component temperatures retrieved.

Acknowledgements

I would like to thank Prof. Z.-L. Li for constructive discussions and the reviewers for their valuable suggestions. This work was supported partially by the National Natural Science Foundation of China (No. 40801139), China Postdoctoral Science Foundation and Science Foundation of Nanjing University of Information Science and Technology (No. 20080317).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.