129
Views
70
CrossRef citations to date
0
Altmetric
Original Articles

Controlling bond cleavage and probing intramolecular dynamics via photodissociation of rovibrationally excited molecules

Pages 711-749 | Published online: 26 Nov 2010
 

Photodissociation studies of vibrationless ground state molecules pervade diverse areas of chemical physics, while those of rovibrationally excited molecules are expected to have even more impact due to the additional fascinating possibilities they offer and the new horizons they open. Photodissociation of rovibrationally excited species involves a double-resonance scheme in which a photodissociative transition is initiated from an excited rovibrational state that might substantially affect the intensity and wavelength dependence of the photoabsorption spectrum. In favourable cases, when the energy is disposed in vibrations that are strongly coupled to the reaction coordinate, this pre-excitation might influence photodissociation pathways and lead to selective bond cleavage. In other cases it might influence the branching ratio between different fragments by altering the photodissociation dynamics. Moreover, the photodissociation of rovibrationally excited species can serve as a sensitive means for detection of weak vibrational overtone transitions of jet-cooled molecules, and therefore a promising way for revealing specific couplings and time evolution of the prepared vibrational states. Experimental studies on different polyatomics are used to demonstrate the above aspects and to show how the mechanism of chemical transformations and the nature of rovibrationally excited states are highlighted by photolysis of these pre-excited molecules.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.