282
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Spectroscopy and energetics of the acetylene molecule: dynamical complexity alongside structural simplicity

Pages 655-718 | Received 23 Jun 2006, Published online: 11 Oct 2010
 

Abstract

This article reviews laser-spectroscopic studies of the structure, energetics, and dynamics of processes involving small polyatomic molecules, particularly acetylene (ethyne, C2H2). The linear, centrosymmetric structure of C2H2 is deceptively simple, given that aspects of its optical spectra and dynamics have proved to be unusually complicated. The article focuses on the ground electronic state of C2H2, where rovibrational eigenstates are only approximately described in normal-mode terms, because intramolecular processes (such as anharmonic mixing, ℓ-type resonances, and Coriolis coupling) introduce extensive global and local perturbations. These tend to spoil quantum numbers and symmetries that are well-defined in low-order basis states. Such effects within the rovibrational energy states of C2H2 are systematically characterized, together with dynamical descriptions in terms of polyad models and insight into photochemical or photophysical processes that may occur at high vibrational energies, without direct electronic excitation. Time-resolved optical double-resonance spectroscopy, probed by ultraviolet-laser-induced fluorescence and pumped by either infrared absorption or coherent Raman excitation, has proved particularly useful in exploring such effects in gas-phase C2H2; techniques of this type are discussed in detail, together with other laser-spectroscopic methods that provide complementary mechanistic information. A closely related topic concerns the area of optothermal molecular-beam spectroscopy, with particular emphasis on research by the late Roger E. Miller to whose memory this article is dedicated. Key publications by Miller and coworkers, in many of which C2H2 and its isotopomers play a central role, are reviewed. These cover the following themes: structure of molecular complexes and clusters, infrared predissociation spectra, rotational and vibrational energy transfer, differential scattering, photofragmentation of oriented complexes, superfluid-helium nanodroplet spectroscopy, aerosols formed in low-temperature diffusion cells, surface scattering experiments, optically selected mass spectrometry, and characterization of biomolecules. A unifying issue that links the assorted topics of this article is the role that intramolecular perturbations can play to enhance (and sometimes suppress) the efficiency of rovibrational energy transfer in colliding molecules or in molecular complexes and clusters; C2H2 and its isotopomers have been a rich source of insight in this regard, although they continue to pose challenges to our understanding.

Acknowledgments

Financial support from the Australian Research Council (ARC) and from Macquarie University, Sydney is gratefully acknowledged. I am particularly grateful to the students (including those whose PhD projects have most recently enriched this topic area, notably Bruce Chadwick, Angela Milce, and Mark Payne), coworkers Citation3, Citation50–55, Citation57, Citation60–69, Citation146, Citation322, Citation324, Citation325, Citation352–365, and other colleagues (both in Australia and abroad) who have exchanged stimulating ideas and taken a lively interest in this area of research.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.