1,367
Views
190
CrossRef citations to date
0
Altmetric
Reviews

Mechanism of charge transport in self-organizing organic materials

&
Pages 87-138 | Received 14 Sep 2007, Accepted 31 Oct 2007, Published online: 28 Jul 2009
 

Abstract

Currently there is great interest in the use of organic materials as the active component in opto-electronic devices such as field-effect transistors, light-emitting diodes, solar cells and in nanoscale molecular electronics. Device performance is to a large extent determined by the mobility of charge carriers, which strongly depends on material morphology. Therefore, a fundamental understanding of the relation between the mechanism of charge transport and chemical composition and supramolecular organization of the active organic material is essential for improvement of device performance. Self-assembling materials are of specific interest, since they have the potential to form well defined structures in which molecular ordering facilitates efficient charge transport. This review gives an overview of theoretical models that can be used to describe the mobility of charge carriers, including band theory for structurally ordered materials, tight-binding models for weakly disordered systems and hopping models for localized charges in strongly disordered materials. It is discussed how the charge transport parameters needed in these models; i.e. charge transfer integrals, site energies and reorganization energies, can be obtained from quantum chemical calculations. Illustrative examples of application of the theoretical methods to charge transport in self-assembling materials are discussed: columns of discotic molecules, stacks of oligo(phenylene-vinylene) molecules and strands of DNA base pairs. It is argued that the mobility of charge carriers along stacks of triphenylene and oligo(phenylene-vinylene) molecules can be significantly enhanced by improvement of molecular organization. According to calculations, the mobility of charge carriers along DNA strands is strongly limited by the large charge induced structural reorganization of the nucleobases and the surrounding water.

Acknowledgements

The Netherlands Organisation for Scientific Research (NWO) and The Netherlands Foundation for Fundamental Research on Matter (FOM) are acknowledged for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.