838
Views
79
CrossRef citations to date
0
Altmetric
Original Articles

Condensation Flow Mechanisms in Microchannels: Basis for Pressure Drop and Heat Transfer Models

Pages 104-116 | Published online: 17 Aug 2010
 

Abstract

This paper presents an overview of the use of flow visualization in micro- and mini-channel geometries for the development of pressure drop and heat transfer models during condensation of refrigerants. Condensation flow mechanisms for round, square, and rectangular tubes with hydraulic diameters in the range of 1–5 mm for 0 < x < 1, and 150 kg/m2-s and 750 kg/m2-s were recorded using unique experimental techniques that permit flow visualization during the condensation process. The effect of channel shape and miniaturization on the flow regime transitions was documented. The flow mechanisms were categorized into four different flow regimes: intermittent flow, wavy flow, annular flow, and dispersed flow. These flow regimes were further subdivided into several flow patterns within each regime. It was observed that the intermittent and annular flow regimes become larger as the tube hydraulic diameter is decreased, and at the expense of the wavy flow regime. These maps and transition lines can be used to predict the flow regime or pattern that will be established for a given mass flux, quality, and tube geometry. These observed flow mechanisms, together with pressure drop measurements, are being used to develop experimentally validated models for pressure drop during condensation in each of these flow regimes for a variety of circular and noncircular channels with 0.4 < Dh < 5 mm. These flow regime-based models yield substantially better pressure drop predictions than the traditionally used correlations that are primarily based on air-water flows for large diameter tubes. Condensation heat transfer coefficients were also measured using a unique thermal amplification technique that simultaneously allows for the accurate measurement of the low heat transfer rates over small increments of refrigerant quality and high heat transfer coefficients characteristic of microchannels. Models for these measured heat transfer coefficients are being developed using the documented flow mechanisms and the corresponding pressure drop models as the basis.

Acknowledgments

This study was supported by a research grant from Modine Manufacturing Company, Racine, WI, and a CAREER Grant from the National Science Foundation. The author would also like to acknowledge the contributions of his graduate students John W. Coleman, Jesse D. Killion, and Todd M. Bandhauer, who contributed immeasurably to this work. These students were also supported, in part, by the American Society of Heating, Refrigeration, and Air-Conditioning Engineers through Graduate Student Grants-in-Aid.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.