94
Views
0
CrossRef citations to date
0
Altmetric
feature articles

Numerical Simulation Simplifications for Coupled Natural Convection and Radiation in Small Enclosures with a Cylindrical Obstruction

, &
Pages 120-129 | Published online: 08 Aug 2011
 

Abstract

A finite control volume numerical model was used to estimate the relative magnitude of natural convection and radiation in small enclosures with a cylindrical obstruction. The enclosure had a height of 2.54 cm, widths between 5.08 cm and 10.16 cm, depth of 5.08 cm, and obstruction diameters between 0.51 cm and 1.52 cm. Temperatures ranging from 310 K to 1275 K were placed on the right boundary. These temperatures represented heating from a pool fuel fire. Simulations were run for an hour to determine the temperature response inside the enclosure and obstruction. Another simulation was run where the right boundary temperature was stepped by 40 K/min to represent a transient temperature ramp up from a fire. When two conditions are met, natural convection can be ignored, and only enclosure radiation is necessary for reaching a solution within 10% of results when all heat transfer modes are included. These conditions are when the right boundary temperatures are continuously above 800 K or when the temperature change was 40 K/min or more.

Notes

* No convergence

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.