272
Views
21
CrossRef citations to date
0
Altmetric
feature articles

Natural Convection Heat Transfer in an Open-Ended Inclined Channel-Partially Filled with Porous Media

&
Pages 67-75 | Published online: 14 Jul 2010
 

Abstract

A numerical simulation of the steady-state, laminar, two-dimensional, natural convection heat transfer in an open-ended channel partially filled with an isotropic porous medium is presented. The Darcy-Brinkman-Forchheimer model along with Boussinesq approximation is used to describe the fluid flow in the porous region. Meanwhile, the Navier-Stokes equation along with Boussinesq approximation is used to describe the flow in the clear flow region. The dependence of the average Nusselt number on Rayleigh number, inclination angle, Darcy number, inertia coefficient, Prandtl number, porous width to channel width ratio, the ratio of the porous effective conductivity to fluid conductivity, and channel width to length ratio is investigated. The numerical results obtained indicate that air gap presence may reduce the average flow in the porous substrate to zero. This leads to the presence of an optimum average Nusselt number at low and high values of the effective thermal conductivity ratios.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.