217
Views
22
CrossRef citations to date
0
Altmetric
feature articles

Investigation of Electrohydrodynamically-Enhanced Convective Heat and Mass Transfer from Water Surface

&
Pages 138-146 | Published online: 14 Jul 2010
 

Abstract

Enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode which was charged with positive high DC voltage impinges to water surface and leads to evaporation enhancement by disturbing the saturated air layer over the water surface. The study was focused on the effects of corona wind velocity, electrode spacing and air flow velocity on the level of evaporation enhancement. Two sets of experiments, i.e., with and without electric field, have been conducted. Data obtained from the first experiment were used as reference for evaluation of evaporation enhancement at the presence of electric field. Applied voltages ranged from corona threshold voltage to spark over voltage at 1 kV increments. The results showed that corona wind has great enhancement effect on the water evaporation rate, but its effectiveness gradually diminishes by increasing air flow velocity. Maximum enhancement ratios were 7.3 and 3.6 for air velocities of 0.125 and 1.75 m/s, respectively. Finally two empirical correlations were obtained for prediction of electrohydrodynamic evaporation enhancement and its coefficient of thermal performance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.