767
Views
97
CrossRef citations to date
0
Altmetric
feature articles

Augmentation of Heat Transfer by Creation of Streamwise Longitudinal Vortices Using Vortex Generators

, &
Pages 406-424 | Published online: 18 Nov 2011
 

Abstract

This paper summarizes the current state of the art related to improvement of the heat exchanger surfaces using streamwise longitudinal vortices. Primarily, the improvements related to fin-tube cross-flow heat exchangers and the plate-fin heat exchangers have been addressed. Protrusions in certain forms, such as delta wings or winglet pairs, act as vortex generators, which can enhance the rate of heat transfer from the heat-exchanger surfaces that may be flat or louvered. The strategically placed vortex generators create longitudinal vortices, which disrupt the growth of the thermal boundary layer, promote mixing between fluid layers, and hence lead to augmentation in heat transfer. The flow fields are dominated by swirling motion associated with modest pressure penalty. Heat transfer is augmented substantially for all the proposed configurations of the longitudinal vortex generators, such as delta wings, rectangular winglet pairs, and delta winglet pairs, with varying degree of pressure penalty. Both computational and experimental investigations on flow and heat transfer in the heat exchanger passages with built-in vortex generators are revisited and summarized.

Acknowledgments

G. Biswas is on deputation from Indian Institute of Technology Kanpur, Kanpur 208016, India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.