209
Views
35
CrossRef citations to date
0
Altmetric
feature articles

Thermal Large Eddy Simulation in a Very Simplified Geometry of a Solar Receiver

, &
Pages 505-524 | Published online: 16 Dec 2011
 

Abstract

Thermal large eddy simulations are carried out in order to study the convective flow in a solar receiver. We investigate the impact of thermal gradients on a turbulent channel flow with imposed wall temperatures for two turbulent Reynolds numbers based on the friction velocity (180 and 395). In this configuration, the flow is subsonic, while temperature variations can be strong and induce significant variations of the fluid properties. The low Mach number equations are considered. The influence of the variations of the conductivity and the viscosity is first investigated. We show that the influence of these properties can be considered constant only for weak temperature gradients. The thermal subgrid-scale modeling is studied and we conclude that for a temperature ratio of 2, we can use a constant subgrid-scale Prandtl number. Finally, we focus on the increase of the temperature ratio that emphasizes the flow dissymmetry and modifies the fluctuations profiles. The physical mechanism responsible for these modifications is explained.

Acknowledgments

We acknowledge the support of the CINES (France), which provided us computer resources to carry out our simulations. We are also thankful to the CEA (France Atomic Agency), for its support with Trio U code.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.