310
Views
9
CrossRef citations to date
0
Altmetric
feature articles

Analysis of an Ultrathin Graphite-Based Compact Heat Exchanger

, , &
Pages 947-956 | Published online: 29 Mar 2012
 

Abstract

The emerging production of ultrathin graphite material is applied to thermal management in a numerical comparison of aluminum and graphite-based plate-fin heat exchangers. Considering anisotropic thermal conductivity in which out-of-plane transport is about two orders of magnitude lower than in-plane values, the ultrathin graphite-based solution outperforms aluminum by rejecting up to 20% more heat on a volumetric basis. Thermal and hydraulic performance is characterized for both solutions over a range of airflow rates in a notional water/air device. Laminar through fully turbulent regimes are considered. Steady and unsteady three-dimensional (3-D) conjugate simulations reveal a faster equilibration rate for the ultrathin graphite-based solution, minimizing thermal lag that must be accounted for in on-demand electronics cooling. Fin optimization studies predict equivalent conductance with graphite at one-tenth the thickness of aluminum. The combination of improved heat rejection, rapid response rate, and low material density make an ultrathin graphite-based solution uniquely suited to aerospace thermal management.

Acknowledgments

This material is based upon work supported in part by the U.S. Air Force under contract FA8650-09-C-2004. Columbia Mishra and Rodney S. Ruoff appreciate support from startup funds from the University of Texas at Austin to Rodney S. Ruoff.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.