601
Views
27
CrossRef citations to date
0
Altmetric
feature articles

Modeling of Air to Air Enthalpy Heat Exchanger

, , &
Pages 1010-1023 | Published online: 11 Apr 2012
 

Abstract

The thermal performance of a Z-shaped enthalpy heat exchanger utilizing 45-gsm Kraft paper as the heat and moisture transfer surface for heating, ventilation, and air conditioning (HVAC) energy recovery is experimentally investigated through temperature and moisture content measurements. A mathematical model is developed and validated against the experimental results using the effectiveness-NTU method. In this model the paper moisture transfer resistance is determined by paper moisture permeability measurements. Results showed that the paper moisture transfer resistance is not constant and varies with moisture gradient across the paper. Furthermore, the model is used to predict the heat exchanger performance for different heat exchanger flow configurations. The results showed that higher effectiveness values are achieved when the heat exchanger flow path width is reduced. Temperature and moisture distribution in the heat exchanger is also studied using a computational fluid dynamics package (FLUENT). To model the moisture transfer through the porous materials a nondimensional sensible–latent effectiveness ratio was developed to obtain the moisture boundary conditions on the heat exchanger surface.

Acknowledgments

The authors acknowledge the financial support received from the Australian Research Council and Air-Change Pty Ltd.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.