296
Views
14
CrossRef citations to date
0
Altmetric
feature articles

Experimental Investigation of Heat Transfer and Resistance Characteristics of a Finned Oval-Tube Heat Exchanger With Different Air Inlet Angles

, , &
Pages 703-710 | Published online: 25 Nov 2013
 

Abstract

The air inlet flow direction is not orthogonal to the heat exchanger surface in many cases. To study the performance of the heat transfer and pressure drop of a heat exchanger with different air inlet angles, this paper shows the experimental system about a finned oval-tube heat exchanger inclined toward the air incoming flow direction. The heat transfer and pressure drop characteristics of four air inlet angles (90°, 60°, 45°, and 30°) are studied separately for the Reynolds number ranging from 1300 to 13000 in this study. The experimental correlations of Nusselt number and resistance coefficient of the air side are acquired. The results show that the overall heat transfer coefficients become smaller and smaller with the decrease of the air inlet angles, while the pressure drops have significant changes. The heat transfer performances of the heat exchanger under the three inclined air inlet angles are worse than that at 90°. Among the three inclined angles, the performance at 45° is the best under identical mass flow rate criterion and at low Reynolds number under identical pressure drop criterion; that at 60° is the best at large Reynolds under identical pressure drop criterion. Finally, some conclusions are attained about the effects of the air inlet angles on the heat transfer and pressure drop performance of the finned oval-tube heat exchanger.

Acknowledgments

This work is supported by the International Cooperation and Exchanges Project of NSFC of China (Grant No. 51120165002), the National Natural Science Foundation of China (Grant No. 51025623, 51276139).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.