185
Views
0
CrossRef citations to date
0
Altmetric
feature articles

Performance Analysis of Aluminum and Graphite Foam Heat Exchangers Under Countercurrent Arrangement

, &
Pages 730-737 | Published online: 25 Nov 2013
 

Abstract

Due to the increasing power requirement and the limited available space in the vehicles, a countercurrent heat exchanger (HEX) is proposed for the position on the roof of the vehicle compartment. Furthermore, a new material, graphite foam with high thermal conductivity and low density, is a potential material for HEXs in vehicles. In order to evaluate the performance of the graphite foam HEX, the CFD computational fluid dynamics (CFD) approach is applied in a comparative study between the graphite foam and the aluminum HEXs under countercurrent flow condition. The analysis is conducted for the thermal performance (heat transfer coefficient) and the pressure loss. The simulation results show that the graphite foam HEX proves higher thermal performance than the aluminum HEX. However, due to the high pressure loss in the graphite foam HEX, the coefficient of performance in the graphite foam HEX is much lower than that of the aluminum HEX. A specific case study is carried out to evaluate the performance of graphite foam HEX as well. Useful recommendations are highlighted and provided to promote the development of the countercurrent flow HEXs in vehicles.

Acknowledgments

The authors acknowledge financial support from the Swedish Energy Agency and industries.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.